

History of Composting Mass Mortality In Avian Flu Outbreaks

- 1984-Va outbreak-Burial was the carcass disposal method
- 2002-Va-Low Pathogenic Avian Flu(LPAI)
 - 1. first flock was buried-public outcry eliminated that option
 - 2. off-site incineration was tried-too expensive and became a odor issue
 - 3. one farm turkey- in-house composting- birds and manure piled in center of house birds mummified and did not compost properly
 - 4. two farms with Ag Bag composting (one chicken egg layer and one turkey) carcasses separated out of the mix when loading the bags
 - 5. landfilling was primary carcass disposal method

 2002-Va- off-site disposal methods may have contributed to spread of LPAI- almost 200 farms were depopulated

- 2004- Delmarva Peninsula- 3 broiler farms composted in-house
 -did not spread beyond those farms
- 2005-demonstration in Va of in-house composting market age turkeys (40-45lbs)

- 2007- WVa and Va -first in-house composting of turkeys during a LPAI outbreak on 2 farms
- 2015 –Minnesota, Iowa, Wisconsin, Nebraska-HPAI outbreak in-house composting- turkey and turkey breeders primary method-over 150 farms composting in outside windrows at layer farms

History continued

- 2016- Indiana- turkeys-outside temperatures below zero F
- o 2022- present –nationwide outbreak
 - wide range of species (including ducks, pheasants, and peacocks)
 - -composting primary carcass disposal method, but burial used in several states

- 2015-2016 USDA contacted composting experts to supervise the composting process during the HPAI outbreak
- Fall of 2015 –this group of experts developed the USDA mass mortality protocol for in-house composting and outside windrows
- 2017- Composting SME LLC contracted with USDA to deploy trained and certified SMEs during future HPAI outbreaks

- 2018 SMEs deployed by the North Carolina Department of Agriculture to oversee composting of flooded poultry houses (non-disease)
- 2018 to present-Maine Compost School trains SMEs in 3 day school either in Maine or in regional training sites
- Full SME certification completion of training and 14 day deployment during an outbreak with a SME

- Many State Department of Agriculture/Environmental and USDA-APHIS staff have been trained and deployed during the 2022 outbreak to the present
- SMEs responsibilities
 - assure that the composting contractors meet the USDA protocol for windrow construction and time /temperature (131 degrees for 3 consecutive days during each 14 day composting period)
 - farm is responsible for complying with state environmental permits

Confirm Flock Information

- Species of bird
- Type of bird (layer, breeder, growout, etc.)
- Average weight per bird
- Number of houses
- Number of birds per house

Facility Information

- Size of each poultry house
- Access to farm
- Staging areas for carbon
- Location of poultry house doors
- Outside composting site (if needed)
- Compost storage site (after 28 days)
- Vehicle C&D site
 Environmental Considerations(berming)

Manure Evaluation

- Type of manure (with or without bedding)
- Depth of litter in each building
- Manure Characteristics
 - Age
 - Moisture
 - Bedding material
 - Consistency
 - Amount of caked material

Additional Material for Composting

- Litter in storage
- Feed and feed ingredients on the farm
- Eggs and egg products
- Paper products (cage liners, egg cartons, etc.)
- Routine mortality compost

- Total weight of each nitrogen source
 - birds
 - raw manure with no bedding
 - Eggs
 - feed
- Calculate total carbon needs
 - Multiply total weight of all nitrogen sources by
 1.5

- Calculate carbon from litter in poultry houses
- Calculate carbon deficit
 - Subtract total weight of litter from total carbon needs

Calculating Carbon Needs

- If there is a carbon deficit, calculate other on-farm carbon resources:
 - Litter in storage
 - Shavings or other bedding
 - Silage
 - Corn stover
 - Wood chips
 - Bedpack manure
 - Routine mortality compost

- Calculating off-site carbon needs
 - Subtract total on-farm carbon sources from total carbon need
- Order carbon deficit

Calculator for Windrow Composting of Mass Poultry Mortality

Site code:	Example 2	Date:	April 18, 2017		Developer:	J. Doe	
Poultry Houses and Poultry Information	House Number	House Length	House Width	Litter Depth (ft.) (average)	Bird Type	Bird Weight (average per bird)	Bird Number (per house)
	1 1	600	42	0.25	Turkey - Meat Ton		14,000
	2	550	4	0.20	Tarkey Modernon		14,500
	3						
	4		4				
	5		4			*	
	6						
	7		4				
	8						
	9						
	10		4				
	11						
	12						
	13 14						
	15						
	16		4				
Carcass Nitrogen Source	Total carcass weight (lbs)						
	392,000						
Additional Nitrogen Sources	N Source	Amount	N Source	Amount	N Source	Amount	Total additional
	1	(lbs)	2	(lbs)	3	(lbs)	Nitrogen sources (Ibs)
	Manure only (no bedding)	7 A. J.	Eggs		Feed	12,000	12,000
Carbon Required for	Carbon factor	Carbon (Ib)					
Compost Windrows	1.5	606,000					
Carbon Available Litter In Houses	Litter	Avg. litter	Litter Bulk Density	Litter	Litter	Litter	ĺ
	Category	depth (ft)	(Ib/ft³)	available (lb)	available (ft³)	available (yd³)	
	Carbon source	0.25	25	157,500	6,300	233	
Carbon Available On-Farm Stored Litter/Compost	Stored Carbon	Amount	Litter Bulk	Stored Carbon	Amount	Compost Bulk Density	Stored Litter
	Source 1	(yd³)	Density (Ib/ft³)	Source 2	(yd³)	(IE/ft³)	and Compost (Ib)
	Litter		30	Compost	6	25	4,050
Additional Carbon Needed	Additional Carbon	Carbon	Bulk	Additional Co	arbon Needed	Additional Carbon Needed	
	Needed (Ib)	Туре	Density	(ton)	(ft³)	(yd³)	1
	146cdcd (1D)	турс	Density	(tori)	0.7	(99)	

House Construction Consideration

Preparing Houses for Windrow Construction

- Raise feed lines
- Raise water lines
- Empty feed from pans and tanks
- Raise or remove heaters
- Other equipment
- Secure loose cables, hoses, etc.
- Evaluate overhead lines outside the buildings

Windrow Construction Principles

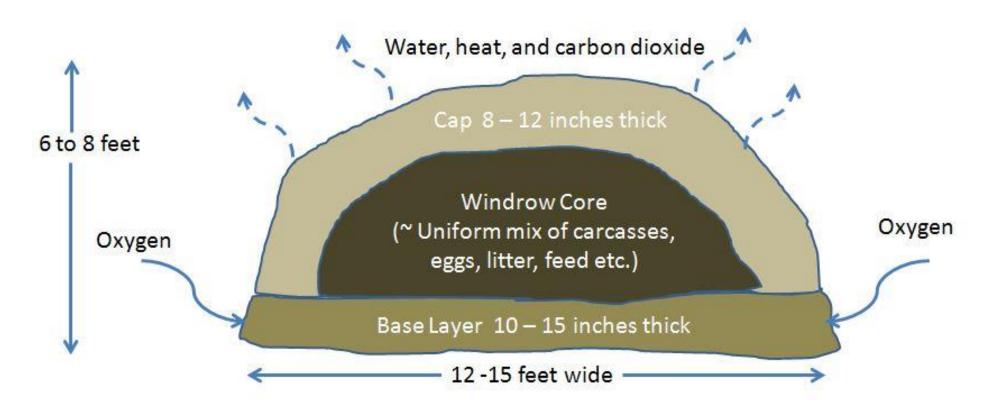
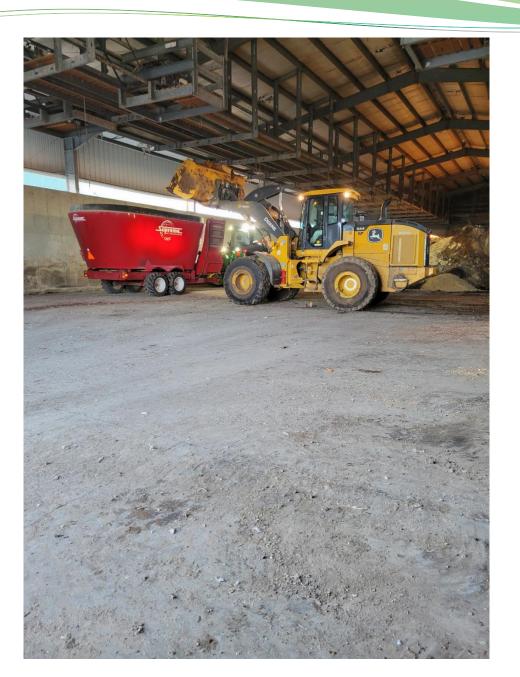


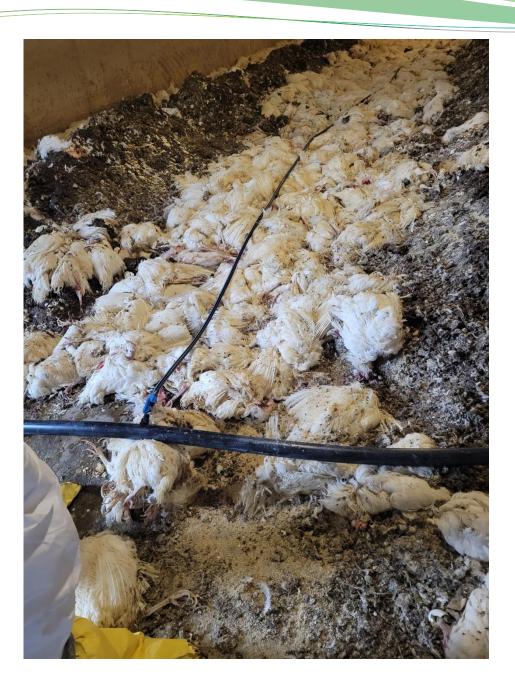
Figure 1. Cross Section of Compost Windrow





• Example:

- 4 million 3.5 lb birds
- 18 foot wide windrows 8 feet tall
- 90 windrows average 500 feet
- 8.5 miles
- 90-100 acres


Volume of additional carbon needed

- Example
- 4 million birds
- 1300 tractor trailer loads @ 100 cubic yards per load
- Need cold zone unloading area to eliminate need for C & D of carbon trucks- loaders can push carbon into hot zone

Adding moisture to dry layer manure

- Add water when mixing carcasses, manure and feed on outside pads
 -construct "volcanoes" (berms may be needed to control runoff)
- Add water in manure shed while mixing
- Add water to outside windrows prior to capping (not as effective)
- Add water in manure pits with drip irrigation tape prior to removing manure and carcasses from house (preferable if houses have manure pits)

Managing Eggs and Egg Products

 Need to know from the beginning –difficult to manage these products after windrows have been constructed

• Build "volcanoes" of carbon in manure shed to mix

Build two sided dam in corner of shed to mix

Most recent news with Dairy Herds

- Dairy Herds in Texas infected with HPAI from migratory birds
- No mortality but drop in feed consumption and milk production over a 2 week period (milk becomes viscous-has to be disposed)
- One worker at a dairy in Texas contracted HPAI –primary symptom was conjunctivitis (pinkeye)
- Recent outbreak of HPAI in Michigan in egg layers and turkeys
 - infected cattle from Texas hauled to dairy in Michigan-workers from the dairy and nearby egg layer farm lived together
 - infected birds from first farm hauled to landfill by a turkey farm may have infected the turkey farm

- 3 egg layer farms and one turkey farm in Michigan
- one egg layer farm in Texas may have contracted HPAI from a nearby infected dairy herd
- Not known at this time if beef herds have been infected

